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Abstract 
The sound of the xylophone is governed by the natural frequencies of the 

wooden bars when they are struck but is also largely affected by where the bars are 
strung and the length of the resonator tubes below. This paper will discuss the physics 
behind these three components and how they ultimately affect the overall sound of the 
instrument. The methods discussed in this paper result in a relatively well-tuned, but still 
imperfect, instrument; it may be possible to create a better sounding instrument by 
exploring different bar shapes in further experiments.  

 

Introduction 
Xylophones are much more complex instruments (with relation to both physics 

and actual construction) than they may seem upon first glance. In order to build a 
concert-grade xylophone, one must have a very solid understanding of the physics 
behind the instrument. Xylophone construction requires a deep understanding of the 
physics of sound, waves and materials, and the ability to utilize experimental methods in 
a multitude of creative ways. 

An understanding of the physics behind xylophones necessitates a strong base 
of knowledge with regard to the basic principles of waves and sound. To start, we know 
that, for all waves, the relationship between wave speed, frequency, and wavelength is 

. By convention, we define that lower notes/pitches have lower frequencies, andfv = λ  

higher notes have higher frequencies. Sound waves travel as longitudinal waves, also 
known as pressure waves; when a sound wave travels through the air, it displaces air 
particles, resulting in higher pressured sections of air and lower pressured sections of 
air relative to the axis of travel (“Sound is a Pressure Wave,” 2006). As these variations 
in pressure travel through the air, they enter the ear and strike the membrane of the 
eardrum, making it vibrate. These vibrations are then transferred to the cochlea, where 
the mechanical signals are turned into electrical signals within the neurons; these 
signals are then transferred to the brain by way of the auditory nerve, and the brain 
interprets them as sound (Errede). Higher frequencies have more frequent 
compressions than their lower counterparts, and therefore hit the ear with high pressure 
more often; we know this because all sound travels through the air at the same speed, 
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so in order for the equation to hold true, higher frequencies must have shorterf  v = λ  

wavelengths and vise versa.  
Sound waves result from vibrating objects. Nearly all objects begin to vibrate 

when they are hit, strummed, plucked, or excited in some manner. When mechanical 
energy is put into an object, the object oscillates between states of potential energy and 
kinetic energy until eventually this vibration comes to a stop due to energy loss in the 
system (typically caused by friction). Every object, depending upon the properties of its 
material and its shape, has a dominant natural frequency; in the language of acoustics, 
this is called the fundamental frequency. There are many factors that determine an 
object’s fundamental frequency, and each of these factors must either influence an 
emitted wave’s velocity or wavelength, because  (“Natural Frequency,” 2006)./λf = v  

Examples of these factors include the material’s shape, density and stiffness (Young’s 
modulus). Some objects, when excited, emit a single frequency, such as a tuning fork. 
Most objects, however, have a set of natural frequencies that they emit when struck. 
Frequencies beyond the fundamental (which is the lowest and most dominant tone) are 
called overtones. Oftentimes objects vibrate at a set of frequencies that have no 
mathematical relationship; musically, this tends to result in the emission of dissonant, 
discordant sounds. Musical instruments, however, are built and tuned so that they 
vibrate with a set of frequencies that are typically related by integral factors; this results 
in a rich, choral sound (“Natural Frequency,” 2006).  

 
The Physics of Tuning the Bars 

Before anything else in xylophone design, the bar material must be selected. As 
discussed previously, an object’s material properties drastically influence the natural 
frequencies at which it vibrates, so proper material selection is imperative. There are 
several materials commonly used in the fabrication of xylophone bars - Kelon, Padauk, 
and Honduras Rosewood (Bremaud, et al). As noted above, density and stiffness are 
the dominant properties that determine the selection of a material for the bars, but there 
are other properties that also affect the tonal quality (e.g., the decay constant). These 
three most common xylophone bar materials have similar densities and modulus 
values, however, Honduras Rosewood stands out as the superior material because of 
its unique secondary properties that render it ideal for concert grade instruments.  
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The major challenge in xylophone construction is the task of tuning the bars. 
When one sets out to build a xylophone, the intended frequency modes for each bar are 
relatively simple to calculate. We know that an octave spans from any given frequency 
to two times that frequency, and that there are 12 different notes between each octave 
in an equally tempered scale. The ratio between any given pair of these notes is 21/12

(Allen). In the United States, it is accepted that the ratio between the fundamental 
frequency and the first two overtones (which is practically all that is achievable during 
tuning) is 1:3 and 1:6; so if the fundamental frequency is 440 Hz, then the first overtone 
is 1320 Hz and the second overtone is 2640 Hz (Youhass). Given these few constraints, 
one can easily calculate the desired fundamental and overtones for each bar.  

The problem, however, rests in the fact that there is no simple way to derive bar 
shape from the desired frequencies. Each bar’s intended fundamental frequency and 
overtones create a chord that is most often achieved with a single or double scalloped 
undercut. Theoretically, there are infinitely many possible bar shapes that would emit 
the desired frequencies, so it is necessary to mathematically constrain the problem of 
determining the exact bar shape in order to make it tractable. Second and third order 
polynomials are often chosen to describe the undercut shape, due to their relative 
mathematical simplicity.  For simple shapes, like tubes and strings, the fundamental 
frequency and overtones for a given shape and material can be predicted by a series of 
relatively simple mathematical equations (Giancoli). In mechanical engineering, there is 
a concept known as Beam Theory, which allows for the prediction of vibrational modes 
in long, thin objects with uniform cross sections (also known as prismatic beams) 
(Haque). Beam theory could be used quite simply to determine the exact shape of 
xylophone bars if they had uniform cross sections, but because of their scalloped 
undercuts, their cross sections are nonuniform. 
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Prismatic beams have uniform cross sections. Credit: Rich Wickstrom 

 
It takes the keen sense of an engineer or physicist to realize that beam theory can still 
be used to predict vibrational modes of nonuniform objects like a xylophone bar; a 
non-uniform object can be approximated as a series of end-to-end prismatic beams of 
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varying thicknesses. Essentially, a xylophone bar can be visualized as many tiny 
rectangular bars pieced together into one scalloped shape. Beam theory can then be 
used to calculate the vibrational modes of each segment, and a mathematical technique 
called receptance substructuring can then be used to model the connections between 
them (Stone).  

Another problem arises, however, when one overcomes the first hurdle. The 
technique described above can be used to determine vibrational modes given a certain 
bar shape, but cannot determine bar shape given desired vibrational modes. This 
results in a challenging problem, considering the initial task was to determine the ideal 
bar shapes to produce a predetermined range of frequencies. The best way to 
overcome this problem is to essentially work it in reverse. The idea is to start with a 
reasonable guess for a bar shape, compute the resulting vibrational modes, and then 
modify the bar shape based on a difference between the computed vibrational modes 
and the desired vibrational modes. This technique is generally referred to as 
constrained non-linear minimization. A computer algorithm is used to iteratively 
minimize the error between the desired frequencies and the computed frequencies; for 
all practical purposes, this is an automated guess and check technique. When the 
algorithm is complete, it determines the necessary undercut to yield the desired 
frequencies, and generates an image of the ideal bar. 

 

 
A computed bar shape from the algorithm program. Credit: Rich Wickstrom 

 
 

The Physics of Stringing the Bars 
After each of the 44 bars is tuned, a method to support them without dampening 

the vibrational modes must be determined. The most common approach is to drill holes 
across the width of the bar so that a taught string can be used to support the bar.  Care 
must be taken to determine the hole locations, because it is necessary to minimize the 
damping effect of the strings on the vibrational modes. We know that standing waves 
have both antinodes, where the displacement is at a maximum, and nodes, where the 
displacement is zero. The optimal place to string the bars would logically be the nodes, 
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because holes placed at the unwavering nodes would minimize the effects on the bar’s 
vibration and frequencies. However, it is important to quantify the actual effect of drilling 
the holes at the nodal locations. In order to evaluate the effect of drilling the holes, it is 
first necessary to determine the location of the nodes for each bar; this can be done via 
a simple experiment.  

 
Determination of the Nodal Locations 

Purpose: To locate each bar’s nodes 
Materials: Wood, Rubber bands, Salt, Mallet, Xylophone bars 
Procedure: 

1. Create a “suspension box” on which to test the bars by building a 
three-sided, trough-shaped, wooden box and placing rubber bands 
around the box to suspend the bar.  

2. Set the first bar on the rubber bands at the anticipated nodal 
locations. 

3. Sprinkle salt on the suspended bar. 
4. Repetitively strike the bar with a mallet until the salt migrates to 

form tight lines over the bar’s nodal points.  
5. Mark each nodal line with a pencil. 
6. Repeat steps 1-5 with all of the remaining bars. 

 
Creating a wooden “suspension box” with rubber bands helps to minimize the damping 
of the bars’ frequencies when running this experiment. When the bar is struck with a 
mallet, the salt migrates to the bars’ nodal points because the bar vibrates minimally in 
those spots. For well-shaped bars, the salt forms tight, clean lines at either end of the 
bar. 
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A bar with salt before and after being struck.Credit: Rich Wickstrom 

 

Before running this experiment, one might have thought that the nodal lines would be 
perpendicular to the long axis of the bar. This, however, rarely happens, because of the 
grain of the wood. In mechanical engineering, this is referred to as “the anisotropic 
nature of the material” (Mingming). 

After determining the location of the nodes, the next step is experimenting to find 
out just how much drilling holes will affect the frequency modes of the bars. This too can 
be achieved through a relatively simple experiment. First, a practice bar without holes is 
placed on the suspension box. A microphone is then hooked up next to the bar. Next, a 
mallet is used to strike the bar, and the subsequent recording is analyzed by software 
that spectrally analyzes the bar to determine its emitted frequencies. 
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Spectral analysis of a practice bar prior to holes being drilled. The fundamental frequency and 

the first two overtones can be seen. Credit: Rich Wickstrom 
 

After holes are drilled, the bar is then placed back on the rubber bands, struck, 
recorded, and analyzed again.  

 
Spectral analysis of a practice bar with holes. Credit: Rich Wickstrom 

 

This data reveals that holes drilled at a bar’s nodes have relatively negligible 
effects on the bar’s vibrational modes. The most important frequency of the three 
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analyzed, the fundamental, was not changed at all; this greatly supports the expectation 
that the drilling the holes at the nodes would have minimal effect. The frequency most 
affected by this change was the second partial (the first overtone), which went a bit flat. 
This change in frequency, however, is hardly noticeable to the untrained ear and can be 
fixed with some minor tuning after the holes are drilled. The combination of the salt 
experiment with the spectral analysis confirms that the holes for each bar should be 
drilled at the nodes. 

 

The Physics of the Resonator Tubes 
So we now know how to tune the bars and where to string them. What’s next? 

The second most important component of xylophones (behind the bars) is the resonator 
tubes. Resonator tubes are traditionally hollow metal cylinders with end stoppers and 
are mounted below the bars. Essentially, resonator tubes serve as amplifiers for certain 
frequencies. Stopped tubes only resonate with frequencies that have wavelengths that 
are four times the length of the tube and odd multiples beyond that (Giancoli). 
Resonator tubes amplify only the frequencies that they resonate with; they boost these 
special frequencies by trapping the normally wasted downward-directed sound energy 
and essentially “bouncing” it back upwards in a flat plane of sound.  
 

 
Stopped tubes only resonate with certain frequencies. Credit: Giancoli 
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When a xylophone bar is hit with a mallet it reacts by vibrating- we know this already. A 
bar, however, does not just vibrate in the up and down direction (the transverse mode) 
as one might expect. They also compress and expand along the long axis (longitudinal 
mode) and form a twisting motion (torsional mode) (LaFavre). Xylophone builders do 
not really have the capability to tune any mode other than the transverse mode, so the 
sound of their instruments is therefore tainted by unwanted frequencies caused by the 
longitudinal and torsional modes. The use of resonator tubes, however, essentially 
mitigates this problem. Frequencies emitted by the longitudinal and torsional modes are 
rarely boosted by resonator tubes, because it is uncommon for them to ever be odd 
harmonics of the fundamental. Because of this, these unwanted frequencies can barely 
be heard in the sound of the final instrument. Recall that xylophones are tuned to a 
1:3:6 frequency relationship, where the first overtone is three times the fundamental and 
the second overtone is six times the fundamental. Because resonator tubes are made to 
only resonate with the fundamental and odd multiples of it, only the fundamental 
frequency and first overtone are amplified. When presented with this information, it is 
important to realize that resonator tubes do not only function as amplifiers, but they also 
function as a means to shape the ultimate sound of the instrument.  
 

Conclusion 
A xylophone is a very complex instrument that, when played, exemplifies many 

principles of physics. To summarize, when a mallet strikes a bar, mechanical energy 
from the mallet is transferred into the bar, causing it to vibrate at its natural frequencies; 
these frequencies are determined by material properties and bar shape. As waves from 
the bar travel into the resonator tube below, certain frequencies are amplified, and 
others are not; this is determined by the length of the resonator tube. Waves from both 
the resonator tube and the bar then travel through the air as variations in air pressure 
and eventually reach the ear, where they are perceived as vibrations and eventually 
interpreted as sound. 

In addition to discussing bar stringing and resonator tubes, this paper describes 
the process of determining bar shape given desired frequencies. In order to solve this 
problem, the broad mathematical situation must be constrained. The technique 
described in this paper does so by limiting the potential undercuts to only those that fit 
the cubic model. This accomplishes the initial task, but does so imperfectly; the second 
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overtone (third partial) is left largely untuned due to the limitations in this undercut 
shape.  

 
The third partial is left largely untuned due to the limitations of a cubic undercut.  

Credit: Rich Wickstrom 

 
Exploring undercuts that mirror higher order functions may yield better control over the 
desired sound properties in the resulting bar. In the future, experiments should be 
conducted to determine if higher order polynomial undercuts could gain better control 
over the higher overtones and sound qualities like amplitude and sustain.  
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Summaries of Each Source 

1. “Equal Temperaments as Mathematical Series" : 
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In an equally tempered scale, math can be used to describe the relationship 
between the 12 notes in an octave. The ratio between any given two sequential 
notes is .21/12  
 

2.  "Vibrational Properties of Tropical Woods with Historical Uses in Musical 
Instruments." : 
As compared to other woods, Hondouras Rosewood has an extremely high 
density paired with a very low decay factor (meaning it “rings” for a very long time 
when hit). This makes it  the best wood for concert grade instrument building. 
 

3. "The Human Ear  Hearing, Sound Intensity and Loudness Levels" : 
Humans hear by sensing the vibrations of a pressure wave and turning that 
mechanical signal into interpretable electrical signals. 
 

4.  "Sound." Physics Principles With Applications : 
Equations can be used to determine what frequencies strings and tubes will emit/ 
resonate at. 
 

5.  "The Timoshenko Beam Theory and Its Extension" : 
A series of complicated equations known as beam theory can used to predict the 
vibrational modes of a prismatic beam.  
  

6.  "Tuning the Marimba Bar and Resonator" :  
A summary of the physics and building techniques behind marimba bars. 
 

7.  "The Physics of Music and Musical Instruments" : 
An explanation of the physics behind a variety of musical instruments. 
 

8.  Automatic Multi-Modal Tuning of Idiophone Bars:  
An algorithm can be used to predict a xylophone bar’s emitted frequencies given 
its shape. 
 

9.  "Natural Frequency": 
The frequency at  which something naturally resonates depends upon the 
object’s material properties and shape. 
 

10.  "Sound Is a Pressure Wave": 
Sound travels through the air as a pressure (longitudinal) waves. 
 
 
 

11.  The Receptances of Beams, in Closed Form, including the Effects of Shear and 
Rotary Inertia: 
Beam theory can be used to estimate the emitted frequencies of non-prismatic 
objects by approximating them as many prismatic beams put together and 
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summarizing the relationship between them with complex mathematical 
equations. 
 

12.  "The Art and Science of Mallet Instrument Tuning": 
Description on the techniques behind idiophone tuning. 
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